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This paper deals with the self-induced translation of intense vortices on the β-plane
in the framework of the multi-layer quasi-geostrophic approximation. An analytical
theory is presented and compared to numerical experiments. To predict the vortex
trajectories, we consider initially monopolar vortices, with a core of piecewise-constant
potential vorticity, and calculate the evolution of the dipolar circulation which advects
the vortex core. This multi-layer model yields analytical solutions for a period while
the Rossby wave radiation is small.

The development of the dipolar circulation and corresponding vortex translation
are described as the results of three effects. The first and second are similar to
what was found in earlier studies with a one-layer model: advection of the planetary
vorticity by the symmetric vortex circulation, and horizonal deformations of the
vortex core. In addition, when stratification is taken into account, the vertical tilting
of the vortex core also plays a role. This third effect is here represented by the relative
displacement of potential vorticity contours in different layers.

Examples are given for one-, two- and three-layer models and compared with
numerical simulations. It is found that the analytical predictions are good for several
Rossby wave periods.

1. Introduction
In geophysical fluid dynamics, the effect of vortices on large-scale flows depends on

their strength and lifetime. For instance, weak eddies from the mesoscale turbulence
have a lifetime of several days to several weeks and their effect on large-scale
flows is mainly to mix tracers along isopycnic surfaces. On the other hand, intense
coherent vortices are long-lived patterns and can have different transport properties.
Indeed, atmospheric hurricanes, oceanic rings and lenses sometimes carry trapped
fluid over thousands of kilometres (Khain & Sutyrin 1983; Kamenkovich, Koshlyakov
& Monin 1986) apparently along preferred paths or directions, which therefore
represents an anisotropic transport. For instance, the Mediterranean salt tongue
extending south-west of Gibraltar is commonly attributed to Mediterranean water
vortices (McWilliams 1985). Various mechanisms responsible for the generation
and propagation of these coherent structures have been studied during the last few
decades, but much work still needs to be done to understand their evolution in a
stratified fluid.
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Observations show that anticyclones move preferentially south-westward and cy-
clones north-westward. This is considered to result mainly from the variation of the
Coriolis parameter with latitude (the beta-effect). For one-layer models, the physical
mechanisms responsible for the self-induced vortex propagation have been elucidated.
As shown by Sutyrin (1987, 1988, 1989a) for a finite radius of deformation as well
as by Smith & Ulrich (1990) and Peng & Williams (1990) for an infinite radius of
deformation (where the radius of deformation is defined by the ratio of gravity wave
speed to the Coriolis parameter), the vortex is advected by a dipolar circulation
generated when a monopolar vortex evolves in an ambient fluid with a background
gradient of potential vorticity. This dipolar circulation has also been detected in
numerical simulations and called ‘beta-gyre’ (McWilliams & Flierl 1979; Fiorino &
Elsberry 1989; Smith, Ulrich & Dietachmayer 1990).

An explicit description of the beta-gyre evolution has been developed by Sutyrin &
Flierl (1994, referred to herein as SF94), for a piecewise-constant potential vorticity
distribution of an initially axisymmetric vortex, in a one-layer quasi-geostrophic
model with an arbitrary radius of deformation (see also Sutyrin et al. 1994). In the
particular case of infinite radius of deformation, Reznik & Dewar (1994) found an
analytical solution for an arbitrary initial vortex. These studies have shown that the
dipolar circulation and corresponding vortex translational velocity were induced by
the generation of a potential vorticity anomaly when planetary vorticity is advected
and rotated differentially by the symmetric vortex circulation, and by the horizontal
deformations of the vortex core. However, numerical simulations have indicated that
baroclinic mechanisms could also strongly influence the vortex motion, depending
on the vortex structure and background stratification (McWilliams & Flierl 1979;
Chassignet & Cushman-Roisin 1991; Shapiro 1992; Flatau, Schubert & Stevens
1994; Morel & McWilliams 1996).

In this paper we describe an analytical model that yields an explicit solution
for the propagation speed of a strong vortex whose potential vorticity structure is
piecewise constant, generalizing the SF94 approach to a multi-layer stratified fluid.
By comparing the analytic solution to numerical experiments, we found that the
deviation of the vortex position from the predicted one does not exceed 20% of the
vortex radius for several Rossby wave periods, TR = 1/βR (where β is the gradient of
planetary vorticity and R the lengthscale of the vortex). The solution provides useful
insights into basic mechanisms governing the baroclinic vortex motion on the beta-
plane. The relationships between the background stratification, the vortex structure
and its dynamics will be studied in detail in a forthcoming paper.

In §2, we present the mathematical framework, the quasi-geostrophic multilayer
equations and the numerical algorithm. Next, in §3, we derive analytical expressions
for the dipolar component of the flow and the vortex trajectory. In §4, we then test
this analytical model and compare the theoretical results with numerical solutions.
The last section contains a summary and a discussion of the results.

2. Quasi-geostrophic multi-layer model
2.1. Equations

We will restrict our attention hereafter to intense vortices for which the Coriolis force
dominates the relative acceleration (small Rossby number, Ro = U/fL � 1) and with
moderate isopycnal deviations. The motions are thus described by a quasigeostrophic
model on the β-plane whose inviscid equations rely on the conservation of potential
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Figure 1. Description of the inner part of the model.

vorticity. For a multi-layer stratified fluid, the equations are (see Pedlosky 1987,
chap. 6.16)

∂PVk

∂T
+
∂(Ψk, PVk)

∂(X,Y )
+ β

∂Ψk

∂X
= 0, (1a)

PVk = ∇2Ψk + f0

ξk−1 − ξk
Hk

, (1b)

ξk =
ρ1f0

g

Ψk+1 −Ψk

ρk+1 − ρk
, (1c)

where Ψk and PVk are the streamfunction and potential vorticity anomaly in the kth
layer, T is the time, X and Y are eastward and polarward coordinates, respectively,
f0 is the Coriolis frequency, Hk is the unperturbed depth of the kth layer, and ξk
is the displacement of the interface between layers having densities ρk and ρk+1, so
that ξk−1 − ξk represents the vortex stretching (figure 1). Notice that (1b, c) are only
valid for internal layers. For the surface and bottom layers, boundary conditions are
necessary. We will make the rigid-lid approximation for the upper layer and consider
either the flat bottom case or an infinitely deep and passive lower layer. The potential
vorticity in the first layer is then

PV1 = ∇2Ψ1 +
ρ1f

2
0

gH1

Ψ2 −Ψ1

ρ2 − ρ1

(1d)

and the potential vorticity in the last active layer is given by

PVN = ∇2ΨN +
ρ1f

2
0

gHN

ΨN−1 −ΨN

ρN − ρN−1

− Υ ρ1f
2
0

gHN

ΨN

ρN+1 − ρN
, (1e)

where N is the number of active layers, and Υ = 0 for the flat bottom case and Υ = 1
if we consider an infinitely deep and passive layer with density ρN+1 below the Nth
layer.

The conservation of total potential vorticity (Γk = βY + PVk) by fluid particles in
each layer is ensured by (1a). When β is not zero, the fluid rotation in the vortex
produces the potential vorticity anomalies which induce the corresponding secondary
flows (the beta-gyres) responsible for the self-propagation of the vortex. The problem
is to calculate both the beta-gyres and the vortex-centre trajectory (X0(T ), Y0(T )) (to
be defined precisely later), given the initial vortex structure Ψk(X,Y , 0).
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2.2. Numerical algorithm

Equations (1a–c) will be solved numerically with a pseudo-spectral code in the
horizontal (biperiodic domain with a 128× 128 horizontal grid in each layer, Orszag
1971).

A biharmonic viscosity is used to avoid computational instability. Viscosity does
not affect the evolution of the vortex for the period of time considered in this paper.
The time step is ∆T = 0.025 non-dimensional time units (see below) and the model
is typically run for 100 units. The periodic continuation of the Rossby wave wake
generated by the displacement of the vortex does not interfere with the vortex core
during this short period.

3. Analytical theory
3.1. Change of coordinates

In this study, we will concentrate on vortices with a strong axisymmetric part. We
take advantage of this by using cylindric coordinates with the origin at the vortex
centre.

Let us introduce a characteristic horizontal scale of the vortex R̂, a vertical scale Ĥ , a
vortex rotation rate Ω̂ and the polar coordinates (r, θ) defined as r cos θ = (X−X0)/R̂,

r sin θ = (Y − Y0)/R̂. Equation (1a–c) can be rewritten in non-dimensional form and
with these new coordinates

∂

∂t
ωk + J(ψ∗k , ωk) + εJ(ψk, r sin θ) = 0, (2a)

∇2ψk +
sk−1

hk
(ψk−1 − ψk) +

sk

hk
(ψk+1 − ψk) = ωk, (2b)

where t = Ω̂T , ωk = PVk/Ω̂, ψk = Ψk/Ω̂R̂
2; the parameters

sk =
ρ1f

2
0R̂

2

(ρk+1 − ρk)gĤ
, hk =

Hk

Ĥ
, ε =

βR̂

Ω̂
(2c)

characterize the stretching effects, the non-dimensional layer depth and the β-effect,
respectively;

ψ∗k = ψk + εur sin θ − εvr cos θ

where (u, v) = (Ẋ0/βR̂
2, Ẏ 0/βR̂

2) is the translational velocity of the vortex centre;
and J(A,B) = (1/r) [∂rA∂θB− ∂rB∂θA] is the Jacobian of A and B expressed in polar
coordinates.

Equations (2a,b) are analytically intractable, but following SF94, an approximate
analytical solution valid for a non-dimensional timescale smaller than (εr0)

−1 (where
r0 is the non-dimensional radius of the vortex) can be found.

3.2. Contour dynamical model

Let us now assume that the potential vorticity structure of the vortex is initially
axisymmetric and piecewise constant. We thus set in each layer

ψk = Φk + εφk , ωk = Qk + εqk,
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where φk and qk represents the beta-gyres and Φk is the streamfunction associated
with the piecewise-constant potential vorticity part of the vortex

Qk =
∑
j

∆k,jH(rk,j + εηk,j − r). (3)

Here, H is the Heaviside function, ∆k,j = Qk,j+1 − Qk,j is the potential vorticity jump
at the jth boundary r = rk,j + εηk,j(θ, t) between different potential vorticity regions
in the kth layer, rk,j is the unperturbed (initial) radius of the boundary, and εηk,j
represents the distortions of the vortex core.

As gradients of Qk give delta functions, we get

D

Dt
Qk =

∑
j

∆k,jδ(rk,j + εηk,j − r)
[
ε

D

Dt
ηk,j −

D

Dt
r

]
Assuming that qk is continuous and equating the coefficients for all the delta function
terms to zero gives at each boundary

∂

∂t
η +

Vθ

r

∂

∂θ
η = Vr = −1

r

∂

∂θ
ψ.

This then yields

∂

∂t
ηk,j + Ωk,j

∂

∂θ
ηk,j +

1

rk,j + εηk,j

∂

∂θ

1

ε
Φk,j = − 1

rk,j + εηk,j

∂

∂θ
φ∗k,j (4a)

with

Ωk,j =
1

rk,j + εηk,j

∂

∂r
(Φk,j + εφ∗k,j),

φ∗k,j = φk,j + ur sin θ − vr cos θ,

and Φk,j = Φk(rk,j + εηk,j , θ, t). Taking (4a) into account, (2a) yields the forced Rossby
wave equation that qk and φk must satisfy:

∂

∂t
qk + εJ(φ∗k, qk) + εJ(φk, r sin θ) + J(Φk, qk) = −J(Φk, r sin θ), (4b)

qk = ∇2φk +
sk−1

hk
(φk−1 − φk) +

sk

hk
(φk+1 − φk), (4c)

Notice that up to now, no approximations have been made. If there were no β-effect,
the r sin θ terms would disappear from (4b), and we could consistently set φk and qk
to zero. Then (3) and (4a) would form a standard contour-dynamical problem (cf.
Polvani, Zabusky & Flierl 1989).

3.3. Linearization

If the vortex is strong enough, we can consider ε to be a small parameter and use a
multi-timescale expansion. We then decompose the vortex flow into an axisymmetric
part and asymmetric perturbations:

Φk = Φk(r, t, εt) + εΦ′k(r, θ, t, εt).

Averaging (4a) over θ shows that, at leading order and for a non-dimensional
timescale which is smaller than (εr0)

−1 (where r0 is the non-dimensional lengthscale
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characterizing the vortex), the radially symmetric part of the vortex Φk keeps its initial
structure and satisfies

∇2Φk +
sk−1

hk
(Φk−1 − Φk) +

sk

hk
(Φk+1 − Φk) =

∑
j

∆k,jH(rk,j − r)

according to (3). Differentiating this, we find an equation for the azimuthal velocity
V = dΦ/dr:(

∇2 − 1

r2

)
Vk +

sk−1

hk
(Vk−1 − Vk) +

sk

hk
(Vk+1 − Vk) = −

∑
j

∆k,jδ(rk,j − r). (5)

while Φ′k then satisfies the equation

∇2Φ′k +
sk−1

hk
(Φ′k−1 −Φ′k) +

sk

hk
(Φ′k+1 −Φ′k) =

1

ε

∑
j

∆k,j[H(rk,j + εηk,j − r)−H(rk,j − r)]

which gives at leading order in the small-ε limit

∇2Φ′k +
sk−1

hk
(Φ′k−1 − Φ′k) +

sk

hk
(Φ′k+1 − Φ′k) =

∑
k,j

∆k,jηk,jδ(r − rk,j). (6a)

Linearizing the dynamical equation (4a,b) yields

∂

∂t
ηk,j + Ωk,j

∂

∂θ
ηk,j +

1

rk,j

∂

∂θ
Φ′k,j = − 1

rk,j

∂

∂θ
φk,j − u cos θ − v sin θ, (6b)

∂

∂t
qk + Ωk

∂

∂θ
qk = −Ωkr cos θ, (6c)

with

Ωk(r) ≡
Vk

r
and

qk = ∇2φk +
sk−1

hk
(φk−1 − φk) +

sk

hk
(φk+1 − φk). (6d)

Thus, the first part of the beta-gyres is generated directly by advection of planetary
vorticity and is described by (6c). The second part of the beta-gyres is induced by
distortions in the vortex core due to radial advection of contours relative to the vortex
centre by the first part of the beta-gyres (equation (6b)).

3.4. Solutions

Assuming that qk = 0 at t = 0, equation (6c) is easily integrated for each layer:

qk = r sin(θ − Ωkt)− r sin θ = Re[ir (eiΩkt − 1)e−iθ]. (6e)

For the timescales considered here, the dominant response is in the azimuthal
mode number one and the residual motion has a dipolar structure. Thus, we set
φk = Re(φke

−iθ), Φ′k = Re(Φ′ke
−iθ), ηk,j = Re(ηk,je

−iθ) (for the sake of simplicity, the
same notation has been used for each real quantity and its associated imaginary radial
part).

Equations (5) and (6a–d) can be solved using vertical modes. We find (see Ap-
pendix A)

Ωk(r) ≡
Vk

r
= −1

r

∑
n,l,j

P
(n)
k α

(n)
l ∆l,jG

(n)
1 (r|rl,j), (7a)
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Φ′k(r, t) =
∑
n,l,j

P
(n)
k α

(n)
l ∆l,jηl,jG

(n)
1 (r|rl,j), (7b)

and

φk = i
∑
n,l

P
(n)
k α

(n)
l F

(n)
l , (7c)

where

F
(n)
l (r, t) =

∫
r′dr′G(n)

1 (r|r′)(eiΩl (r
′)t − 1) (7d)

which can alternatively be expressed as

F
(n)
l =

r

γ2
n

− I1(γnr)

∫ ∞
r

K1(γnr
′)eiΩltr′2dr′ −K1(γnr)

∫ r

0

I1(γnr
′)eiΩltr′2dr′.

In these solutions, P (n) = (P (n)
1 , ..., P

(n)
k , ..., P

(n)
N ) is the nth vertical eigenmode asso-

ciated with the stretching operator (see Appendix A) and −γ2
n is its corresponding

eigenvalue. The N × N matrix α with coefficients α(n)
l is the inverse of the matrix P

whose columns are the vectors P (n). G(n)
1 is the Green function associated with the

Helmholtz operator ((r∂r(r∂r) − 1)/r2 − γ2
n), and is expressed in terms of modified

Bessel functions K1 and I1 (see Appendix A).

3.5. Propagation speed

Equations (6b) and (7a–c) yield

∂

∂t
ηk,j − i

∑
l,i

Ak,j;l,iηl,i = i
φk,j

rk,j
− u− iv, (8a)

where

Ak,j;l,i = Ω(rk,j)δklδij +
1

rk,j

∑
n

P
(n)
k α

(n)
l ∆l,iG

(n)
1 (rk,j |rl,i) (8b)

and

φk,j = i
∑
n,l

P
(n)
k α

(n)
l F

(n)
l (rk,j , t)

according to (7c).
To solve (8a), we must choose a definition for the vortex centre. As discussed in

SF94, the most appropriate choice is the centre of one contour. We then set ηk0 ,j0 = 0
in (8a), where k0, j0 refers to the chosen contour (j0th contour in the k0th layer).

This then allows us to calculate the propagation speed

u+ iv = i
∑
l,i

Ak0 ,j0;l,i ηl,i + i
φk0 ,j0

rk0 ,j0

, (9a)

and replacing u + iv by the right-hand side of (9a) permits us to calculate the ηl,i
independently of the propagation speed for all the other contours which correspond
to distortions of the vortex. We get

∂

∂t
ηk,j − i

∑
l,i

Bk,j;l,iηl,i = i
φk,j

rk,j
− i

φk0 ,j0

rk0 ,j0

(9b)

with

Bk,j;l,i = Ak,j;l,i − Ak0 ,j0;l,i.
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Equation (9b) is an ODE and is easily solved using normal modes; i.e. the free
solutions to (9b) with time–dependence eiσt, which are eigenvectors of matrix B:∑

l,i

Bk,j;l,iξ
(m)
l,i = σ(m)ξ

(m)
k,j .

For the modes with non-zero eigenvalues, the forced equation (9b) would oscillate
around a steady-state value (if the forcing term were constant in time). But modes
with zero eigenvalue grow linearly in time (again for a constant forcing) which may
lead to substantial vortex distortion and induce strong additional drift velocities of
the vortex.

3.6. Model limits

We are dealing with intense vortices that can be described by the quasi-geostrophic
equations, i.e. vortices for which ε = βL/Ω̂ � 1 and Ro = U/fL = Ω̂/f � 1. There is
no contradiction implicit in these assumptions, rather the vortex rotation rate must
satisfy βL � Ω̂ � f, which is the case for many geophysical vortices.

When the flat bottom case is considered, there exists a barotropic mode with an
associated Green function decreasing slowly for large r (A4) in Appendix A). It can
also be proven (see Morel & McWilliams 1996) that, in that case, if the bulk integral
of the potential vorticity anomaly is not zero initially, the vortex is not isolated and
its associated velocity field decreases as 1/r in each layer. Our problem has then no
solution because the integral in (7d) is not defined.

To avoid this degeneracy we can consider either a model with finite barotropic
radius of deformation (Sutyrin 1988) or a model with an infinitely deep lower layer
and set Υ = 1 in (1e). This model filters out the barotropic mode and makes the
solution tractable. If the barotropic mode is taken into account and is associated
with an infinite radius of deformation, we must define isolated vortices with zero total
potential vorticity anomaly. For the piecewise-constant potential vorticity structures
considered here, this means that the potential vorticity jumps ∆k,j and radii rk,j must

satisfy Σk,j Hk ∆k,jr
2
k,j = 0.

4. Comparison between numerical solutions and theory
Let us now consider the case of a vortex with two contours, the first one in layer

k1 and associated with rk1 ,1 = r1, ηk1 ,1 = η1, ∆k1 ,1 = ∆1, and the second one in layer k2

and associated with rk2 ,1 = r2, ηk2 ,1 = η2, ∆k2 ,1 = ∆2. Notice that the two contours can
be in the same layer if k2 = k1. We have

Ωk(r) = −1

r

∑
n

P
(n)
k [α(n)

k1
∆1G

(n)
1 (r|r1) + α

(n)
k2
∆2G

(n)
1 (r|r2)].

If we assume that the first contour in layer k1 stays centred (η1 = 0), (9b) gives the
equation for the evolution of η2:

∂

∂t
η2− iσ(2)η2 = i

φk2
(r2, t)

r2
− i

φk1
(r1, t)

r1

=
∑
n,l

α
(n)
l

∫ [
P

(n)
k1

r1
G

(n)
1 (r1|r)−

P
(n)
k2

r2
G

(n)
1 (r2|r)

]
(exp(iΩl(r)t)− 1)rdr (10a)
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with

σ(2) = − 1

r2

∑
n

P
(n)
k2
α

(n)
k1
∆1G

(n)
1 (r2|r1)−

1

r1

∑
n

P
(n)
k1
α

(n)
k2
∆2G

(n)
1 (r1|r2). (10b)

equation (10a) is easily integrated and gives

η2 =
∑
n,l

−iα(n)
l

∫ [
P

(n)
k1

r1
G

(n)
1 (r1|r)−

P
(n)
k2

r2
G

(n)
1 (r2|r)

]

×
[

exp(iΩk(r)t)− exp(iσ(2)t)

Ωk(r)− σ(2)
+

1− exp(iσ(2)t)

σ(2)

]
rdr (11)

The translation velocity of the vortex centre is given by (9a) and can be integrated
with respect to time to give an analytical expression for the trajectory. We get

x+ iy =
1

r1

∑
n,k

P
(n)
k1
α

(n)
k

(
−r1t
γ2
n

+

∫
drrG(n)

1 (r1|r)
1− exp(iΩk(r)t)

iΩk(r)

)

+
i

r1

[∑
n

P
(n)
k1
α

(n)
k2
∆2G

(n)
1 (r1|r2)

]∫ t

0

η2dt. (12)

The special case of a single contour is obtained if we set ∆2 = 0 in the previous equa-
tions, and in particular, only the first term of the right-hand side remains in (12). This
term is associated with the advection of planetary vorticity and describes an accelera-
tion up to the maximum long-wave speed, γ−2

n for the nth mode. The additional drift
associated with the second term results either from the horizontal distortion of the
vortex core (if both contours are in the same layer) or from vertical tilting of the vortex
core, which is a specific baroclinic effect. Notice that, as the bulk integral of the poten-
tial vorticity anomaly is usually not zero here, (12) is only defined when the barotropic
mode has been filtered out. We have thus only considered the case of an infinitely deep
lower layer. In each experiment, the first contour is located in the first layer (k1 = 1),
and we have chosen r1 = r2 = 0.5, ∆1 = 1, ε = 0.1, s1 = 1, s2 = 2 and h1 = 0.25.

As we are dealing with piecewise-constant potential vorticity, the centre of a contour
is rather difficult to track in numerical simulations. Therefore, we have computed
the trajectory of a streamfunction extrema. There is a slight difference between the
trajectory of the extrema of the streamfunction and the centre of the contour, but it
can be calculated analytically (see Appendix B), and we have thus chosen to make
comparisons using trajectories of streamfunction extrema.

4.1. Single contour case

Vortex trajectories according to (12) and to the numerical model for the single contour
case are shown in figure 2(a) for a reduced-gravity model (one layer with a passive
lower layer) and in figure 2(b–d) for a two-and-a-half layer model (two active layers
with a passive lower layer) and various thicknesses for the second layer h2 (see
table 1). In these plots, the trajectory obtained from the quasi-geostrophic numerical
model (dashed line) and predicted by our analytical calculations (thin for the contour
center and bold for the streamfunction extremum) are represented for a period of
100 non-dimensional time units together with the position of the vortex centre every
10 time units.

Equation (6e) shows that at small times, the dipolar component of potential vortic-
ity is oriented meridionally, with a positive anomaly to the west and a negative one
to the east (we have considered only cyclones in our experiments). Figure 2 shows
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Figure 2. Comparisons between numerical solutions (dashed) and theoretical trajectories (bold for
the streamfunction extrema and thin for the contour centre) for (a) one contour in a reduced-gravity
model and, (b–d) one contour in a two-and-a-half layer model with different background strati-
fication given in table 1: (b) experiment 1, h2 = 10, (c) experiment 2, h2 = 2, (d) experiment 3,
h2 = 0.5.

Experiment no. h2 1/γ(1) 1/γ(2)

Reduced gravity ∞ 0.5 ∞
1 10 0.49 2.26
2 2 0.46 1.08
3 0.5 0.35 0.71

Table 1. Experiments with one contour: stratification characteristics

that for the dipolar component of the streamfunction, this structure yields a positive
anomaly to the east and a negative one to the west, corresponding to an initial west-
ward displacement of the streamfunction minimum. As this dipolar component is also
associated with a northward current at the contour centre, the streamfunction mini-
mum starts to drift northward. The weak wavy patterns that can be seen in both the
numerical and analytical trajectories are more pronounced in the propagation speed
(see SF94). These are due to the revolution of particles around the vortex centre at a
rotation rate Ω and are associated with the oscillatory nature of the integrals in (12).

The period of time for which the theoretical results should be accurate is T �
(εr0)

−1 = 20. In fact, the plots show that the theoretical predictions are very close to
the numerical solutions (the deviation does not exceed 20% of the vortex radius) at
least up to 40 time units. Some strong discrepancies then appear when the depth of
the second layer h2 is large, that is to say when the rotation rate Ω2 is weak (as there
is no potential vorticity anomaly in the second layer, the rotation rate is weaker for a
larger layer depth). This is due to dispersion by Rossby waves in this layer. Indeed, the
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Figure 3. Evolution of the potential vorticity anomaly in layer 1 (a–d) and 2 (e–h) for experiment
3 (single contour case in the first layer and 2.5 model with h2 = 0.5), and at t = 0, 15, 50 and
100 time units. Negative values are dashed. Notice the development of the beta-gyre and its initial
dipolar form at t = 15.

maintenance of the vortex identity, which is a hypothesis of our theoretical model, is
ensured by the nonlinear term in (2a) (see McWilliams & Flierl 1989). If the rotation
rate is weak, ε is no longer a small parameter and the linearization of the equations
is not valid. In that case, the vortex will undergo dispersion by Rossby waves whose
effect will be to dissipate the motion in the second layer. Thus, in the case of large h2

the vortex trajectory is well predicted by the reduced-gravity model (where no motion
is assumed in the second layer) (cf. figure 2a,b). When the rotation rate is strong
in both layers of the model, the theoretical and numerical plots show very good
agreement (the deviation does not exceed 20% of the vortex radius) up to more than
70 time units for the reduced-gravity case (figure 2a) and for h2 = 0.5 (figure 2d). The
correction due to the different definitions of the ‘center’ of the vortex (streamfunction
extrema or centre of a contour) is rather small and can be neglected in practice; it is
shown here to illustrate the agreement between numerical and analytical models.

Figure 3 shows the evolution of the potential vorticity anomaly in both active
layers for h2 = 0.5. The dipolar structure of the beta-gyres is clear, especially at the
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Figure 4. Comparisons between numerical solutions (dashed) and theoretical trajectories (solid) for
two contours in a two-and-a-half layer model. The stratification is kept the same in all experiments,
however the potential vorticity changes in the second layer. (a) Experiment 1, ∆2 = 0.1, (b)
experiment 2, ∆2 = 1, (c) experiment 3, ∆2 = −0.1, (d) experiment 4, ∆2 = −0.5.

beginning of the simulation. At later stages, however, its shape becomes disturbed
by higher asymmetric modes which were neglected at leading order. Notice that
the orientation of the dipole axes is different in each layer, which leads to different
displacement direction and amplitude in comparison with the one-layer case.

4.2. Two-contour case

Here, comparisons are made to test the theoretical prediction for the effect of the
vertical tilting on the vortex trajectory. Thus, experiments were done with a two-
and-a-half layer model with k2 = 2, h2 = 0.5 and various ∆2. Again, the trajectories
were calculated for 100 non-dimensional time units. The corresponding trajectories
(dashed for numerical solutions and solid for the analytical ones) are given in figure 4.
The development of the vertical tilting is represented by the horizontal separation
between the contour centres in different layers: (X2 − X1, Y 2 − Y 1), where (Xi, Y i)
is the contour centre of the ith layer. It is shown in figure 5 for experiments 2 and 4
(∆2 = 1 and ∆2 = −0.5, respectively).

When ∆2 > 0, the agreement is, as for the single contour case with a strong rotation
in the second layer, very good for up to 70–80 time units (the deviation does not exceed
20% of the vortex radius), so that the analytical model gives accurate information
on the trajectory up to at least 100 time units. The vortex tilting (figure 5a) is well
reproduced for the same period and remains small. Thus the effect of the vertical
tilting is, in this case, moderate and the propagation is still dominated by advection
of planetary vorticity. Note also that when the vortex becomes stronger (that is to
say when ∆2 increases), the meridional displacement is weaker (see figure 4a,b). In
fact, as can be expected from (12), for a stronger vortex with higher rotation rate,
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Figure 5. Comparison between numerical solutions (dashed) and theoretical prediction (solid) for
the separation between the two contour centres (X2 − X1, Y2 − Y1): (a) experiment 2, ∆2 = 1, (b)
experiment 4, ∆2 = −0.5.

the period of acceleration toward the maximum long-wave speed is shorter and the
vortex reaches the state when the propagation is predominantly westward sooner.

When ∆2 < 0, the vortex structure is apparently unstable and undergoes a strong
deformation. Indeed, figure 5(b) shows that the vertical tilting between contours in
two layers grows to values comparable with a vortex diameter. Thus, the influence
of the self-advection due to tilting of the vortex core drastically modifies the vortex
propagation. This was demonstrated also by Morel & McWilliams (1996). However,
the initial prediction is quite close to the numerical solution up to 40–50 time units
(again, the deviation of the vortex centre does not exceed 0.1), and the direction of
propagation is well described by the analytic theory.

Figure 6 shows the evolution of the potential vorticity patches of each layer on the
same graph (solid contour for the first layer, dashed for the second) for experiments 2
and 4. It shows that, in addition to the large tilting of the vortex core when ∆2 = −0.5,
the vortex undegoes a strong mode-two deformation and become elliptical, whereas
for ∆2 = 1, the vortex structure preserves its axisymmetry.
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Figure 6. Evolution of the potential vorticity contours in both layers every 25 time units for (a)
experiment 2, ∆2 = 1, and (b) 4, ∆2 = −0.5 (two contours and a two-and-a-half layer model). The
dashed contour is associated with the second layer and the solid one with the first layer.

5. Summary and discussion
We have presented an analytical model for the prediction of vortex trajectories on

the β-plane in a multi-layer model. In addition to the generation of the potential
vorticity anomaly by planetary vorticity advection and horizontal deformations of the
vortex core, we have found that, when stratification is taken into account, the vertical
tilting of the vortex core can drastically modify the propagation too.

This model yields an explicit relationship between the background stratification,
the vortex structure and its motion. Thus, it can shed light on some numerical results
such as the strong dependency of a vortex trajectory on its vertical structure (Morel
& McWilliams 1996). Note also that the present model can be easily generalized
to include bottom topography or a vertically sheared mean current. In particular,
Hogg & Stommel (1990) have described a mechanism for the advection of subsurface
vortices by an upper layer current, but they neglected the effect of the interface
displacement associated with the vertical shear of the current. Morel (1995) showed
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that the dynamics of some vortices were in fact very sensitive to this interface
deviation and that their displacement could be very different from that predicted by
Hogg & Stommel. The analytical theory developed is able to take into account this
effect.

As mentioned previously, this analytical model is based on an expansion and is
a priori valid only for times smaller than the Rossby wave period (T � 1/εr0).
It turns out, however, that in most of our numerical experiments, when the as-
sumption of strong rotation is valid in each layer, the analytical prediction is
very accurate up to several Rossby wave periods and gives useful insight into
the vortex behaviour. Although we did not compute the next-order terms, which
is necessary to check the validity of our analytical model at the slow timescale
εt, the leading-order solution apparently gives a good representation for times of
the order of the characteristic Rossby wave timescale. This indicates that the
neglected nonlinear terms act to maintain the asymmetric part of the flow field
small.

We have presented eight comparisons between this analytic model and a numerical
quasi-geostrophic one. We have performed several other experiments with up to
two contours and three layers and with different initial conditions, both for the
vortex structure and background stratification. These experiments led to the same
conclusion: the theoretical formulae can be considered accurate up to 2–5 Rossby
wave periods. The strongest discrepancies between the theoretical prediction and
numerical results occur either when the initial vortex structure is not stable and the
relative displacement of the contours becomes large, or when the rotation rate is
weak in one layer and the vortex flow undergoes dispersion.

Finally, these comparisons between numerical and analytical models also show
that the numerical pseudospectral model can cope with piecewise-constant potential
vorticity structure, and is reliable for the period of time considered here.
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Appendix A. Vertical modes
For perturbations having an azimuthal mode one, equations (5), (6a) and (6d) can

all be written in the same way for the radial variation of each quantity and take the
form

∇2
1ϕk +

sk−1

hk
(ϕk−1 − ϕk) +

sk

hk
(ϕk+1 − ϕk) = Γk (A1)

with

∇2
1 =

1

r

∂

∂r
r
∂

∂r
− 1

r2
.



218 G. G. Sutyrin and Y. G. Morel

This equation can be solved in terms of vertical modes P (n) = (P (n)
1 , ..., P

(n)
k , ..., P

(n)
N )

associated with the vortex-stretching matrix in (2b), so that

sk−1

hk
(P (n)

k−1 − P
(n)
k ) +

sk

hk
(P (n)

k+1 − P
(n)
k ) = −γ2

nP
(n)
k

where γ−1
n = Rn/R̂ is the non-dimensional radius of deformation of the nth mode. We

also define a matrix α, with coefficients α(n)
k , by orthogonality conditions with vertical

modes (
∑

n α
(n)
k P

(n)
l = δkl). α is the inverse of the matrix P whose column are the

eigenvectors P (n) (so that we also have
∑

k α
(m)
k P

(n)
k = δmn). Thus, if we set

ϕk =
∑
n

ϕ(n)P
(n)
k , Γk =

∑
n

P
(n)
k Γ (n), Γ (n) =

∑
l

α
(n)
l Γl ,

ϕ(n) satisfies

∇2
1ϕ

(n) − γ2
nϕ

(n) = Γ (n). (A2)

A Green function G
(n)
1 (r|r′) for the Helmholtz’s operator of the left-hand side (when

Γ (n) = δ(r′ − r)) is given by (see Abramowitz & Stegun 1970)

G
(n)
1 (r|r′) =

{
−r′I1(γnr)K1(γnr

′), r < r′

−r′I1(γnr
′)K1(γnr), r > r′,

(A3)

with I1 and K1 being modified Bessel functions. Note, that in the rigid-lid approxi-
mation, and for the flat bottom case, there exist a barotropic mode associated with
γ0 = 0, so that (A3) becomes

G
(0)
1 (r|r′) =

{
−r/2, r < r′

−r′2/2r, r > r′.
(A4)

The solution of (A2) is thus

ϕ(n)(r) = G
(n)
1 (r|r′)

if Γ (n)(r) = δ(r − r′) and

ϕ(n)(r) =

∫
G

(n)
1 (r|r′)Γ (n)(r′)dr′

otherwise. So the solution of (A1) is given by

ϕk(r) =
∑
n,l

P
(n)
k α

(n)
l

∫
G

(n)
1 (r|r′)Γl(r′)dr′ (A5)

Appendix B. Trajectory correction
In numerical simulations we calculate the trajectory of a streamfunction extrema

(xψ0 (t), yψ0 (t)). Its displacement relative the vortex centre defined by (9a,b) can be
calculated from the condition ∇ψ = 0. We get

x
ψ
0 −x0 = − 1

ΩL(0)

(
∂(φL + Φ′L)

∂x

)
r=0

, y
ψ
0 −y0 = − 1

ΩL(0)

(
∂(φL + Φ′L)

∂y

)
r=0

(B1)
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which after a few calculations gives

x
ψ
0 − x0 + i(yψ0 − y0) =

1

Ωk0
(0)

[∑
n,l

−iP (n)
k0
α

(n)
l Z

(n)
k +

∑
n,l,m

P
(n)
k0
α

(n)
l ∆l,mrl,mK1(γnrl,m) 1

2
γnηl,m

]
(B2)

where

Z
(n)
k = lim

r→0

F
(n)
k (r, t)

r
= −γn

2

∫ ∞
0

K1(γnr)(e
iΩkt − 1)r2dr (B3)
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